
Evaluation-Driven
Product Development

aiGrunn 2025

hello@oscarvilaplana.cat

Data

Generalizes rules 
and applies them

LLM
Pipeline

Human
Builder

Specifies rules

Analysis

ambiguously 
doesn’t understand 
how LLM processes

 ? 
there’s too much data 
what’s meaninful?

in weird ways 
to never-seen inputs

The plan … and how it fails

Òscar Vilaplana

Technical Product Manager at

hello@oscarvilaplana.cat

1

Evaluation

Evaluation

• Accuracy

• Relevance

• Coherence

• Safety

• Customer satisfaction

• Conversion

Measure systematically the quality of your LLM pipeline

to drive systematic improvement.

Drive systematic improvement
Understand what the
LLM gets wrong 

• In what contexts?

• How severe & frequent?

Fixed a problem: 
what’s the impact

• Did it help? How much?

• What side effects did we
introduce?

• How do we prevent
regression?

New model: 
should we switch? 
 

• What’s the impact?

• What does it do 
better / worse?

2

Pre-mortem

What went wrong?
• How am I supposed to know?

• What were the inputs & outputs?

• What were you trying to do?

• What did you think the problem was?

• What did you tell the LLM to do?

• What did you think you had to tell the LLM?

• What did the LLM understand?

What went wrong?

LLM
Pipeline

Human
Builder

Data

Specifies ambiguously

Lack of comprehension 
of what happens and 
what the problem really isGeneralizes wrongly

SAMPLE

SCALE

INTENT

IMPLEMENTATION

TRAINING

REALITY

Comprehension
Human
Builder

Data

• The problem you’re trying to solve

• What happens. How does it go wrong

• What edge cases

• What goes wrong

• What user behaviors (vs our assumptions)

• What scenarios

• What patterns. What distribution

But you can't manually inspect all possible
interactions between users and your LLM pipeline.

SAMPLE

SCALE

Specification

LLM
Pipeline

Human
Builder

• What do you actually want the
system to do?

• How do you specify your
domain expertise and context?

• What does “good enough”
mean in your domain?

• What does success look like?

• Which edge cases matter?

• What trade-offs are OK with?

• What failure modes are
acceptable?

INTENT

IMPLEMENTATION

Generalization

LLM
Pipeline

Data

TRAINING

REALITY

• Generalizing the specification to every possible new situation is
inherently difficult.

• Perfect prompts can't fix fundamental model limitations.

• You may need to: decompose complex tasks, 
fine-tune for your domain, or add retrieval augmentation.

LLM
Pipeline

Human
Builder

Data

Specifies ambiguously

Lack of comprehension 
of what happens and 
what the problem really isGeneralizes wrongly

SAMPLE

SCALE

INTENT

IMPLEMENTATION

TRAINING

REALITY

3

Automated Evaluation

Discovery-first evaluation

1. Discovery: What can go wrong?

2. Evaluation: How often does each thing go wrong?

3. Improvement: Did our fixes work?

Analyze, Measure, Improve

Improve

Iterate systematically 
prompts, models, 
pipeline architecture.

Analyze

Measure
What goes wrong? 

 
Find & catalog new failure modes

How often does each failure happen? 
Did our improvements work? .

Qualitative insights → Quantitative metrics

Real traces

Trace: Complete Interaction Record

USER INPUT
LLM

Pipeline

CONTEXT

LLM OUTPUT… processing steps …

• What the user asked

• What data was available (conversation history, tools, other data)

• What the system did (processing steps, metadata)

• Generated response

Example Trace

Failure Mode: How exactly did it go wrong?

A failure mode is a specific way in which your LLM system failed to do what
you wanted.

• Hallucination

• Context loss: misses key information provided

• Failed to follow instructions

• Bias (from prompt, training)

• etc.

Failure Mode: How exactly did it go wrong?

A failure mode is a specific way in which your LLM system failed to do what
you wanted.

• Hallucination

• Context loss: misses key information provided

• Failed to follow instructions

• Bias (from prompt, training)

• etc.

Automate to Amplify Insight
To automate evaluation, we need insight on what's
going wrong.

Automated evals with insight won't be very helpful.

• It can only find generic failure modes.

• Lacks domain and product context: what
matters for your use case?

• It has its own bias.

Automation can amplify insight. You need the
insight to start with.

> llm_judge("Find problems in this tourism
recommendations response”, trace)

"Response could be more concise"
Too generic

> eval_transport_suggestion(trace)

"Suggested city driving"
Parking in the city is expensive.
Bike or public transport is more convenient.

4

Error Analysis

Error Analysis

Analyze

Measure
What goes wrong? 

 
Find & catalog new failure modes

How often does each failure happen? 
Did our improvements work? .

Qualitative insights → Quantitative metrics

Real traces

Error Analysis

Traces

Open
Coding

Observe & 
note everything

Axial
Coding

Group into 
failure patterns

Re-Code

Evaluation dataset 
50-100 annotated examples of 

each failure mode

No new 
insights

Failure modes
Category Subcategory Short Code Detail

Booking & Reservation Failures Missed Availability Check Didn’t check availability Recommended Anne Frank House tickets for tomorrow without checking sold-out status

Incorrect Pricing Info Didn’t check price Quoted Keukenhof entry at €15 when current price is €19

Invalid Time Slots Didn’t check opening times or
availability Suggested 9 PM visit to Rijksmuseum (closes at 5 PM)

Double Booking Risk Conflicting reservations Booked overlapping tours: 10 AM canal cruise and 10:30 AM Rijksmuseum tour

Geographic & Location Failures Wrong City Mapping Incorrect location match Recommended Rotterdam attractions when user asked about "Dam Square area"

Unrealistic Travel Times Wrong travel time Suggested visiting Giethoorn and Zaanse Schans in same 2-hour window

Transport Confusion Wrong travel instructions Directed to take metro to Volendam (no metro connection exists)

Weather Inappropriateness Missed weather context Recommended Vondelpark picnic during December storm warning

Content & Information Failures Outdated Event Info Stale calendar data Promoted King's Day celebrations on April 28th (moved to 26th)

Language Assumption Error Switched language Responded in Dutch to an English query

Accessibility Oversight Ignored accessibliity context Suggested windmill climb to wheelchair user without warning

Search & Filtering Failures Budget Constraint Violation Ignored price filters Returned €200/person dinner recommendations for "budget-friendly" request

Date Range Confusion Wrong time of year Suggested Christmas markets in July

Group Size Mismatch Capacity oversight Recommended intimate canal boat for 25-person corporate group

Interest Profile Ignored Preference blindness Suggested art museums to user who explicitly said "no museums"

Communication & Response Failures Local Knowledge Gaps Tourist vs local confusion Explained what a stroopwafel is to an Utrecht local

Overwhelming Information Too many options Listed 47 activities for simple "what to do this afternoon" query

Synthetic Queries
1. Decide what dimensions make sense for

your product. 

2. Generate scenarios based on your
dimensions 

3. Ask an LLM to generate queries for each
scenario + examples 

4. Review, discard unrealistic queries 

5. Call your product and obtain the traces

eg: intent, query complexity, 
type of traveler, 
time sensitivity, …
intent: travel recommendations 
query complexitiy: simple 
type of traveler: family with children 
time sensitivity: planning

intent: cheap tickets 
query complexitiy: complex 
type of traveler: solo, young 
time sensitivity: last minute

5

Automation

Specification vs Generalization

LLM
Pipeline

Human
Builder

Data

Specifies ambiguously

✅ We understand now!

Generalizes wrongly

SAMPLE

SCALE

INTENT

IMPLEMENTATION

TRAINING

REALITY

Analyze, Measure, Improve
Improve

Iterate systematically 
prompts, models, 
pipeline architecture.

Analyze

Measure
✅ 

What goes wrong? 
 

Find & catalog new failure modes

How often does each failure happen? 
Did our improvements work? .

Qualitative insights → Quantitative metrics

Real traces

Automate to Amplify Insight
To automate evaluation, we need insight on what's
going wrong.

Automated evals with insight won't be very helpful.

• It can only find generic failure modes.

• Lacks domain and product context: what
matters for your use case?

• It has its own bias.

Automation can amplify insight. You need the
insight to start with.

> llm_judge("Find problems in this tourism
recommendations response”, trace)

"Response could be more concise"
Too generic

> eval_transport_suggestion(trace)

"Suggested city driving"
Parking in the city is expensive.
Bike or public transport is more convenient.

Evaluators

Labeled 
examples

LLM-as-Judge

Iterate on
prompt

includes

Calculate
Success

Rate

validate generalization

test against

Training / Dev / Test Split

Training Development Test

20%

Few-shot
examples

Include in the
prompt

40%

Iterate on LLM
changes

40%

Measure
performance

Training 
Set

LLM-as-Judge

Iterate on
prompt

includes

Measure
performance

validate generalization

test against

Dev 
Set

Test 
Set

LLM-as-Judge Prompt
• Focus on only one failure mode.

• Give it a very clear task.

• Explain precisely what it means to
pass and what it means to fail.

• Give it few-shot examples of both
pass and fail. Choose especially
interesting and difficult examples.

• Get output in a structured format
that includes reasoning and
pass / fail.

You are an expert evaluator. 
Evaluate whether the Tourist Attractions Assistant responds with travel
suggestions relevant to the user.

Responses should offer maximum 10 concrete options when the query is
specific, or ask clarifying questions when the query is too ambiguous.

FAIL IF the agent:

• List more than 10 alternatives.

• Gives generic options to an ambiguous query.

PASS IF the agent:

• Lists 10 alternatives or fewer.

• Asks relevant clarifying questions to an ambiguous query.

<Few-Shot Examples, including query and desired output)>

Output format: JSON

{
 "reasoning": "Brief explanation of option count and
appropriateness",
 "answer": "Pass" | "Fail"
}

Measure performance

Measure
performance

validate generalization

Test 
Set

How much does the LLM as judge agree with your
judgment?

• Calculate True Positive Rate (TPR). How often
does the judge agree with you on a pass?

• Calculate the true negative rate (TNR): how often
does the judge agree with you on a fail?

When there is a disagreement, inspect the case and
see why the judge might have gotten it wrong. What
should change in the prompt? Do you need better
examples?

Repeat until you get enough agreement. 
(depending on your product: 70%? 90%?)

Analyze, Measure, Improve
Improve

Iterate systematically 
prompts, models, 
pipeline architecture.

Analyze

Measure
✅ 

What goes wrong? 
 

Find & catalog new failure modes

How often does each failure happen? 
Did our improvements work? .

Qualitative insights → Quantitative metrics

Real traces

Systematic Improvement

LLM
Pipeline

Human
Builder

Data

Keep refining the prompt

Keep analyzing 
production traces

Measure how well 
LLM generalizes

SAMPLE

SCALE

INTENT

IMPLEMENTATION

TRAINING

REALITY

Questions?

Thank you!

hello@oscarvilaplana.cat

